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BodyWave® Brain Wave Monitoring   
 
The beginning: Neurons 
Billions of neurons (nerve cells) comprise the brain.  Neurons are largely responsible for 
automatic and unconscious brain function. They are also the source of the brain's 
electrical charge which is measured by an electroencephalograph or EEG.  
 
Neurons are very small and 
their electrical charge is 
also minute. The neuron’s 
electrical charge is caused 
by its polarization; it has 
negative ions (charged 
particles) inside its 
membrane and positive ions 
outside. Enzymes pump 
ions across their 
membranes. The ions 
traveling across the 
neuron’s membrane create 
discrete electrical signals known as action potentials that travel down the axon. One may 
think of the axon as the major cable through which the electrical current passes. It is 
enclosed in a myelin sheath which serves as an insulator. When the action potential 
reaches the terminal buttons, it causes the release of chemical neurotransmitters into the 
synaptic cleft, a minute gap between two neurons. A synapse occurs when those 
neurotransmitters stimulate or inhibit another neighboring neuron. Thus, the electrical 
activity of the brain initiates from the currents within a single dendritic spine, passes 
through the axon as an action potential, and then causes the neighboring neuron to either 
fire or inhibit. 
 
Here’s a simple way of thinking of ions pushing each other: Many children often set 
dominoes upright, create a trail, and tip the first domino to begin a delightful chain 
reaction. When this process occurs in neurons en masse, it’s termed volume conduction. 
When an initial neuron fires its neurotransmitters into the synaptic cleft (think of a 
baseball pitcher), it activates a receptor (think baseball catcher) in the dendrite or body of 
the neuron that is adjacent to the synaptic cleft. The adjacent neuron is termed the post-
synaptic neuron. The neurotransmitter, when combined with the receptor, typically 
causes an electric current within the dendrite or body of the post-synaptic neuron. 
Thousands of post-synaptic currents from a single neuron's dendrites and body then sum 
up to cause the neuron to generate an action potential. This neuron then synapses on other 
neurons, and so on as in a domino reaction. 

When this domino effect occurs -- a neuron receiving a neurotransmitter signal from an 
adjacent neuron via an action potential -- the neighboring neuron responds by releasing 
its ions in the synaptic cleft outside the cell. This is obviously a very tiny process 
emitting a very tiny amount of electricity. However, when many ions of like charge repel 
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each other (remember like charges repel and opposites attract) coming from many post 
synaptic neurons simultaneously, and if they are lined up spatially just like dominoes, 
they can nudge their adjacent neurons, who spark their neighbors. This wave is the 
product of volume conduction. A volume conduction wave is similar to the wave an 
audience produces in a football stadium. The wave formed by volume conduction is 
formed of electrons instead of being formed of a throng of football fans. If the wave is 
strong enough to be pushed through the skull to the scalp or body surface, sensors, 
usually made from metal or a conductive plastic, will have their electrons pulled or 
pushed. The difference in push between two sensors is known as voltage. The EEG is a 
sophisticated and highly sensitive volt meter that records voltages passing between the 
sensors over time. Because voltage fields fall off with the square of the distance, 
recording EEG activity away from the scalp has been virtually impossible until now. 

BodyWave® and the new EEG Monitoring Paradigm 
In the recent past, monitoring EEG away from the scalp was incredibly difficult. The 
miniscule size of the discrete voltages produced by a single neuron mandates that EEG 
can only be read from the summation of many thousands or millions of neurons that have 
similar spatial orientation and that are the firing in synchrony. If the neurons don’t have 
similar spatial orientation, they won’t line up, no pushing of ions occurs, and brain waves 
won’t push on the sensors to be detected. They are even more difficult to measure away 
from their source – the head. 

The incredibly minute size of the electrical potentials measured by EEG most likely come 
from pyramidal cells in the cortex because they are close to the surface, are aligned, and 
fire synchronously. Ionic currents once thought to travel down the axon sheathed by 
myelin are not thought to be chief producers of the process known as volume conduction. 
Volume conduction produces a wave or field which is distributed over the entire folded 
surface. The field measured by BodyWave is thought to be produced by dendritic activity 
and post synaptic activity.  The fact that volume conduction produces waves in a large 
field distributed over a large surface means that it can be measured away from the head. 
 
For the purposes of BodyWave, it is not necessary to claim localization or non-
localization of brain wave fields. BodyWave simply views brain energy as a field, 
collects the field energy as if the brain were a radio tower broadcasting from the brain 
and through the body. A sophisticated series of proprietary algorithms and hardware then 
displays them on a computer or controls a computer program wirelessly through 
Bluetooth technology. This advanced paradigm pictures the field produced by the brain 
as composed of some combination of global field and neural network activity that can be 
monitored by sensors connected to any part of the skin on the human body as it is 
essentially part of the neural system. The skin is in fact the largest organ of the body. The 
human body is 70%+ saline, a good conductor.  
 
The fact that brain wave fields can be detected from the body surface poses some 
limitations to the use of BodyWave; it would not be appropriate for topographical brain 
mapping or clinical/medical use. However, using BodyWave for applications like 
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relaxation, attention training, reducing stress – in fact a host of common, practical uses – 
is highly appropriate and quite doable.  
 
The fact that no intrusive or invasive headset must be worn to collect brain activity makes 
BodyWave incredibly useful to achieve peak performance, meditation, or to use it with 
one’s Droid or iPhone totally discretely -- even while sitting on a crowded train. 

BodyWave® and EEG Waves 
Acquisition and monitoring of brain activity away from the head is both proprietary and 
different than clinical EEG monitoring. However, used for fun, education, training, or 
other fields of endeavor, BodyWave is quite practical.  

BodyWave measures electrical activity in the brain commonly referred to as brain waves. 
Scientists studying the brain have found that it continuously produces four or more 
distinct speeds or frequencies of brain waves. Although these different brain waves are 
produced simultaneously and in combination, a person’s state of consciousness depends 
on the dominant (strongest) frequency band at each time.  During sleep, the brain 
produces dominant slow delta waves. During daydreaming or in the twilight of sleep, the 
brain produces dominant theta waves that are slow but a bit faster than delta. When the 
brain is calm and mentally unfocused --for example when a person relaxes with the eyes 
closed – the still faster alpha waves are dominant.  Finally, when the brain is actively 
engaged on mentally demanding tasks in an alert and focused way, beta waves, the fastest 
of these four classes of brainwaves become dominant. 

The following graphs are a comparison between EEG taken from scalp locations and 
BodyWave. They are quite similar in form and function no matter the frequency.  
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