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Abstract. Electroencephalography (EEG) is one of the most commonly used

measures in neuroscience and psychophysiology research for studying func-

tional information of brain activity such as cognition and emotion. However,

because of lack of convenient methods to measure EEG, it is difficult to use in

everyday situations. The electrodermal potential (EDP) can be used to monitor

brain activities. This study investigated the correlation between scalp acquired

EEG and EDP from the body below the head, for two distinctive cognitive

statuses of relaxation and attention. The results showed that theta power

decreases while beta power increases in the attention state compared to relax-

ation from EDP. We also obtained 84.2 % of classification accuracy to dis-

criminate attention-relaxation states using EDP signals, while obtaining

83.9*89.3 % of the classification accuracy using a single channel EEG.
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1 Introduction

EEG (Electroencephalogram) often provides interfaces for controlling machines or

computers due to recent developments in inexpensive, easy-to-wear, and low power

acquisition systems [1, 2]. Thus, EEG-based Brain Computer Interface (BCI) is one of

the most promising technologies for device interaction and detection of cognitive and

emotional activities. As a result, abundant studies have been performed to investigate

the BCI-based interfaces: event-related synchronization/desynchronization

(ERS/ERD), steady-state visual evoked potentials (SSVEP), slow cortical potentials

(SCP), visually evoked P300 potentials, movement-related potentials (MRPs), and

changes in brain rhythms [3, 4].

However, current EEG-based BCI headsets are ill-suited for daily use owing to

challenges with hardware positioning/placement, requisite device knowledge, training,

and skills. In fact, the current EEG-based BCI technology usually takes anywhere from

a few minutes up to 45 min to configure EEG electrodes on a person’s scalp depending

on the types of electrodes (e.g., dry and wet electrodes) used, which is one of major

obstacles for the technology to be widely adapted in daily living. Additionally, con-

sumer based EEG headsets have not been widely accepted by the public due to design

and their obtrusive nature.
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To overcome these issues, we explored the possibility of estimating the brain’s

cognitive states using electrodermal potentials (EDP), which characterize the skin’s

electrical activity by measuring potential differences between two separate electrodes

similar to measuring surface electromyogram, from non-scalp areas in the body. In this

study, we developed a wrist-worn device (Fig. 1) by collaboration with Freer Logic

(Skyland, NC, U.S.A.), and verified the feasibility of classifying an individual’s

attention and relaxation states by comparison with EEG.

2 Methods

2.1 Signal Acquisition

Simultaneous EDP and EEG recordings were performed in 5 healthy subjects (4 males,

1 female) using the proposed device and commercially available EEG recording system

as shown in Fig. 2. The EDP device incorporating two recording electrodes and one

reference electrodes was positioned in the middle of anterior left forearm where bra-

chioradialis and flexor carpi radialis muscles reside. For the EEG recording, an

Avatar EEG recording amplifier (Electrical Geodesics Inc., OR, U.S.A.) with g.

SAHARA dry electrodes (g.tec Medical Engineering, Gmbh, Austria) was used. Six

electrodes (Fz, Cz, C5, C6, PO3, and PO4) were positioned based on the international

10–20 system, while the reference and ground were placed at the right and left mas-

toids, respectively. The recorded data were transmitted to the same host computer for

signal processing via on-board microcontrollers and Bluetooth modules.

Fig. 1. The proposed wrist-worn device to measure EDP. The printed circuit board (a) measures

1 × 1 inch in size and the device has four electrodes in the back (b); two electrodes are for signal

sensing, one is for ground and the other one is for electrode-off detection.
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2.2 Experimental Protocol

Participants were tested in multiple sessions over 40 min. They were requested to avoid

any stimulants such as coffee, tea, and cigarettes in the 2 h preceding the recording

period. We educated the participants on the entire experimental procedure and guided

them during the recordings. No training and/or calibration were provided to the sub-

jects prior to the recordings. The participants sat down in a comfortable chair wearing

both EDP and EEG recording systems described in Sect. 2.1 during the recording.

A host computer was connected to both, the EDP and the EEG recording systems for

simultaneous data storage.

The participants were asked to be comfortable and to refrain from moving to

minimize motion and EMG artifacts during recording. The experiments were con-

ducted with the following protocol: First, a monitoring session was performed for

eyes-closed resting EEG with no stimulus. Second, the participants were asked to relax

while closing their eyes to obtain the status of relaxation. Third, for the attention state,

the Continuous Performance Test (CPT) was used to induce sustained attention level of

the participants. The CPT was designed to present the randomized sequence of letters

on the computer screen for 0.5 s with 1-s intervals. Participants were instructed to

continuously pay attention to the computer screen for about 2 min and mentally count

the total number of appearances of a designated target letter (e.g. ‘G’) (Fig. 3). At the

end of the CPT session, the participant was required to input the total number of such

appearances. We assessed the attentiveness of each participant by verifying the cor-

rectness of the answer.

2.3 Signal Processing

The recorded EEG and EDP data were analyzed using MATLAB (MathWorks Inc.,

Natick, MA). The EEG signal was low-pass filtered under 45 Hz (with digital

Butter-worth filter) and 5th-order band-pass filtered with 0.5 to 50 Hz. Under human

Fig. 2. Two acquisition systems were used: EEG and EDP. An electrode cap was positioned as

International 10–20 electrode placement, and the activity was recorded at Fz, Cz, C5, C6, PO3,

and PO4. EDP was collected via the wrist-worn device.
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supervision, the EDP and EEG data were synchronized with time stamps generated

during the recording. Each dataset was analyzed in 5-s epochs without overlap. The

Power spectral density (PSD) and the averaged power were calculated for four fre-

quency bands: theta (4*8 Hz), alpha (8*12 Hz), beta1 (12*15 Hz), and beta2

(15*20 Hz).

For the attention classification analysis, we extracted a more diversified set of

features from both the spectral domain and the time domain. A total of 80 features were

composed of the statistical variables in time-domain signals (e.g. mean, standard

deviation of amplitude), the spectral powers (both absolute and relative) of each fre-

quency bin (e.g. theta, relative theta, theta/alpha, 4*12 Hz, 12*20 Hz), and signal

entropy and complexity (e.g. permutation entropy, Higuchi fractal). The classification

between the relaxation and attention states was analyzed with the linear kernel Support

Vector Machine (SVM) in a 10-fold cross-validation for each subject. We balanced the

number of samples of the relaxation and attention states by resampling for unbiased

error estimation.

3 Results

Figure 4 represents the signal trend analysis results from the EDPs. We compared

average powers of each frequency band when the subjects were asked to change their

cognitive states (e.g., attention to relax, quiet attention to relax, and attention to quiet

attention). In the comparison between attention and relax states, we observed theta

power decreases in 14 epochs (93.3 %) out of 15 epochs and an increase in beta2

power in 12 out of 15 epochs (80 %). On the other hand, for comparisons between

attention and quiet attention states, no significant difference was observed.

We carried out 10-fold cross-validation to estimate classification accuracy in each

subject (Fig. 5). As expected, the 8-channel EEG showed the highest accuracy

(91.1 %). However, the classification performance varied in single EEG channel

analysis, ranging from 83.9*89.3 %. EDP achieved 84.2 % of classification accuracy

on average, which is comparable to that of any single EEG channel, but with large

standard deviation (17.0 %) relative to EEG (3.3*7.8 %). We believe EDP is a

valuable signal for studying an individual’s attentional state, although it requires

improvements in signal reliability for general use.

Fig. 3. Continuous Performance test devised for the attention state.
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4 Conclusion

We have introduced a technique for unobtrusive measurements of cognitive respon-

siveness in the body. We hypothesized that body locations other than the traditional

scalp area can also represent a cognitive activity in bio-potentials such as EDP. To

verify this hypothesis, we performed simultaneous EDP and EEG recording at six scalp

locations of Fz, Cz, C5, C6, PO3, and PO4 and the body location of the middle of the

anterior left forearm. As shown in the results, there are similar trends in EDP and EEG

responses to the cognitive status of relaxation and attention. Although many challenges

exist in the field, our results illustrate the considerable potential of this technology.

Further investigation on EDP and development of the acquisition system will enhance

usability of the EEG-based BCI system. In addition, this study initiates further

investigation to unveil EDP and EEG correlation for other brain functionalities such as

event-related potentials responding to sensory, cognitive, or motor events.

Fig. 4. Comparisons of the average power of each frequency band with different cognitive

states. (Color figure online)

Fig. 5. Comparative analysis of the EDP and EEG in classification accuracy of

attention-relaxation state (N = 5). (Color figure online)
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